Nanoparticle movement: plasmonic forces and physical constraints.

نویسندگان

  • P E Batson
  • A Reyes-Coronado
  • R G Barrera
  • A Rivacoba
  • P M Echenique
  • J Aizpurua
چکیده

Nanoparticle structures observed in aberration-corrected electron microscopes exhibit many types of behavior, some of which are dominated by intrinsic conditions, unrelated to the microscope environment. Some behaviors are clearly driven by the electron beam, however, and the question arises as to whether these are similar to intrinsic mechanisms, useful for understanding nanoscale behavior, or whether they should be regarded as unwanted modification of as-built specimens. We have studied a particular kind of beam-specimen interaction - plasmon dielectric forces caused by the electric fields imposed by a passing swift electron - identifying four types of forced motion, including both attractive and repulsive forces on single nanoparticles, and coalescent and non-coalescent forces in groups of two or more nanoparticles. We suggest that these forces might be useful for deliberate electron beam guided movement of nanoparticles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reversal of the optical force in a plasmonic trap.

We study in detail the optical forces generated by a plasmonic trap on a plasmonic nanoparticle. The permittivity of the trapped particle is tuned using a Drude model. The interplay between the plasmon resonances of the trap and of the particle can produce different regimes leading to attractive or repulsive forces. Hence a particle will be trapped or repulsed depending on its permittivity. Suc...

متن کامل

Electromagnetic forces on plasmonic nanoparticles induced by fast electron beams

The total momentum transfer from fast electron beams, like those employed in scanning transmission electron microscopy STEM , to plasmonic nanoparticles is calculated. The momentum transfer is obtained by integrating the electromagnetic forces acting on the particles over time. Numerical results for single and dimer metallic nanoparticles are presented, for sizes ranging between 2 and 80 nm. We...

متن کامل

Three dimensional nanoparticle trapping enhanced by surface plasmon resonance.

We demonstrate a three dimensional nanoparticle trapping approach aided by the surface plasmon resonance of metallic nanostructures. The localized surface plasmon resonance effect provides strong electromagnetic field enhancement, which enables confinement of nanoparticles in the three-dimensional space. Numerical simulations indicate that the plasmonic structure provides approximately two orde...

متن کامل

Plasmonic interactions and optical forces between au bipyramidal nanoparticle dimers.

Interparticle forces that can be driven by applied (optical) fields could lead to the formation of new particle arrangements when assembled in arrays. Furthermore, the potentially large interactions and large local fields associated with plasmon excitations in anisotropic nanoparticles can lead to enhanced nonlinear responses and applications for sensing. These and other applications would bene...

متن کامل

Optical trapping and sensing with plasmonic dipole antennas

In this work, we study how to use a plasmonic dipole antenna as a multifunctional nanodevice for surface-enhanced Raman spectroscopy (SERS), localized surface plasmon resonance (LSPR) –based sensing and optical trapping. An analytical model is implemented to link the local electric field enhancement with the gradient forces, as well as the resonance shift caused by the presence of the analyte w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ultramicroscopy

دوره 123  شماره 

صفحات  -

تاریخ انتشار 2012